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Abstract

This work investigates the existence and non-existence of traveling wave
solutions for Kolmogorov-type delayed lattice reaction-diffusion systems.
Employing the cross iterative technique coupled with the explicit construc-
tion of upper and lower solutions in the theory of quasi-monotone dynami-
cal systems, we can find two threshold speeds c∗ and c∗ with c∗ ≥ c∗ > 0. If
the wave speed is greater than c∗, then we establish the existence of travel-
ing wave solutions connecting two different equilibria. On the other hand, if
the wave speed is smaller than c∗, we further prove the nonexistence result
of traveling wave solutions. Finally, several ecological examples including
one-species, two-species and three-species models with various functional
responses and time delays are presented to illustrate the analytical results.
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1 Introduction

The purpose of this work is to investigate the existence and non-existence of trav-
eling wave solutions for the following Kolmogorov-type delayed lattice reaction-
diffusion systems:

d

dt
un,i(t) = dn

(
un,i−1(t)− 2un,i(t) + un,i+1(t)

)
+ un,i(t)fn

(
(ui)t(−τn)

)
, (1.1)

for 1 ≤ n ≤ N , t ≥ 0 and i ∈ Z, where dn > 0 are discrete diffusion coefficients;
fn ∈ C1(RN ,R) and τn := (τn,1, · · · , τn,N) is a nonnegative time-delayed vector.
Note that the notation (ui)t(−τn) means

(ui)t(−τn) = (u1,i(t− τn,1), · · · , uN,i(t− τn,N)).

Systems (1.1) describe the dynamics of coupled N layer equations distributed in
one-dimensional lattice. On the nth-layer, the quantity un,i at the site i is linearly
coupled with the nearest sites un,i−1 and un,i+1 of the same layer n and nonlinearly
coupled with all quantities at the same site of all layers through the nonlinearity
un,i(t)fn

(
(ui)t(−τn)

)
with spatial homogeneous time delay (τn,1, · · · , τn,N). We

call such systems as discrete diffusive Kolmogorov-type systems. The geometrical
configuration of systems (1.1) can be seen in Figure 1.
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..· · · ..the N -th layer

Figure 1: Geometrical configuration of systems (1.1).

Theoretically, we can regard systems (1.1) as the discrete version of the fol-
lowing time-delayed reaction-diffusion systems

∂

∂t
un(x, t) = dn

∂2un
∂x2

(x, t)+un(x, t)fn
(
u1(x, t− τn,1), · · · , uN(x, t− τn,N)

)
. (1.2)

In many situations, the discrete models can exhibit more complicated and col-
orful dynamics than the continuous models. Moreover, many lattice differential
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equations have also been proposed as models in various contexts. For examples,
in ecological models, systems (1.1) can describe the dynamical interactions of N
species distributed in the one-dimensional discrete habitat. Then un,i denotes
the population of the n-th species at the habitat i and the function fn denotes
the per capita growth rate. Additionally, from the viewpoint of neural network
models, systems (1.1) represent that each cell un,i not only diffusively (locally)
interconnects with its neighbours on the same layer but also coupled with the cells
of other layers. Many applications and mathematical results of neural network
models were established in past years, see e.g. [3, 4, 9, 10, 17] and the references
cited therein. Generally speaking, the investigation of dynamics for systems of
lattice differential equations is more difficult than the scalar lattice differential
equations, especially when the nonlinearities do not have monotonic properties.
This gives us the main motivation to study dynamics of lattice differential systems
with more general nonlinearities.

In the past decades, many researchers investigated the dynamics of lattice
differential equations, see e.g. [2,5–8,14,16–20,22,23,27–29,36,37,39,40]. In par-
ticular, the existence of traveling wave solutions for lattice differential systems is
an important and interesting subject which has attracted considerable attentions.
For the related results of traveling wave solutions for lattice differential equations,
we refer the readers to [2,5–8,14,16–20,22,23,27–29,36,39–41] and the references
cited therein. Here we recall some techniques which were widely used in the
mentioned literature. In the works [18, 19, 23, 24, 36, 41], the authors used the
same framework to obtain the existence of traveling wave solutions for some dis-
crete reaction-diffusion systems (or continuous reaction-diffusion systems). Their
framework is sketched as follows. First, they transformed the existence problem of
traveling wave solutions as a fixed point problem to a differential operator which
depends mainly on the nonlinear reaction terms. Then, assuming some monotone
conditions for the nonlinearities within suitable partial order, they proved that
the operator is invariant on a nonempty compact set which can be defined by an
admissible pair of upper-lower solution. Finally, they established the existence
results by using the Schauder’s fixed point theorem. According to the framework,
two points are crucial in the investigation. One is to show the invariance of the
differential operator under some quasimonotone condition, and another one is the
construction of a pair of upper-lower solution. To achieve these two points, Wu
and Zou [36, 41] first established this framework by assuming the nonlinearities
satisfying the so-called quasimonotone (QM) condition. Then, Huang et al. [19]
extended the quasimonotone condition to the so-called partial quasimonotone
condition (PQM) and use the same framework to show the existence of traveling
wave solutions for some epidemic models, which can not be obtained by Wu and
Zou’s results. Later than [19, 36, 41], Li et al. [23] further introduced the weak
quasimonotone condition (WQM) for the nonlinearities and proved the existence
of traveling wave solutions for some delayed diffusion-competition systems.

Recently, Hsu and Yang [18] considered the existence of traveling plane wave
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solutions of the following systems

d

dt
uni,j(t) = Ln[u

n
i,j](t) + uni,j(t)fn(ui,j(t), (ui,j)

n̂
t ), (1.3)

where all fn are C1 functions from R2N−1 to R, ui,j(t) := (u1i,j(t), · · · , uNi,j(t)),

Ln[u
n
i,j](t) := dn,1u

n
i+1,j(t) + dn,2u

n
i,j+1(t) + dn,3u

n
i−1,j(t) + dn,4u

n
i,j−1(t)− dn,0u

n
i,j(t),

(ui,j)
n̂
t := (u1i,j(t− τ1), · · · , un−1

i,j (t− τn−1), u
n+1
i,j (t− τn+1), · · · , uNi,j(t− τN)),

for (i, j) ∈ Z2 and 1 ≤ n ≤ N. Here τi and di,j are nonnegative real constants
which represent the time delays and coupling coefficients respectively. The func-
tions fn are assumed to be of competitive Lotka-Volterra type. Employing the
cross-iterative method coupled with the explicit construction of a pair of upper-
lower solution, they obtained a speed c∗ and show the existence of traveling plane
wave solutions of (1.3) connecting two different equilibria when the wave speeds
are greater than c∗.

Moreover, Lin et al. [24] also considered traveling wave solutions of the fol-
lowing reaction-diffusion systems

∂un(x, t)

∂t
= dn

∂2un(x, t)

∂x2
+ Fn(ut(x)), for all t > 0 and x ∈ R, (1.4)

where dn > 0, 1 ≤ n ≤ N, u = (u1, · · · , uN) ∈ RN , F = (F1, · · · , FN) :
C([−τ, 0],RN) → RN is continuous, and ut(x) ∈ C([−τ, 0],RN) for some τ > 0
such that ut(x)(θ) = u(x, t+ θ) for θ ∈ [−τ, 0], t ≥ 0 and x ∈ R. By introducing
the mixed quasimontone condition, the exponentially mixed quasimonotone con-
dition and employing the Schauder’s fixed point theorem, the authors reduced
the existence problem of traveling wave solutions to that of finding a pair of
admissible upper-lower solution of systems (1.4). Then they applied their re-
sults to obtain the existence of traveling wave solutions for some multi-species
competition, cooperation and predator-prey delayed systems.

Motivated by the literature [18,19,23,24,36,41], in this work, we will consider
the existence of positive traveling wave solutions of (1.1). For convenience, we
first introduce the following notations.

Notation 1.1. Let a := (a1, · · · , aN),b := (b1, · · · , bN) ∈ RN and Φ(s) :=
(ϕ1, · · · , ϕN(s)), Ψ(s) := (ψ1(s), · · · , ψN(s)) ∈ C(R,RN).

(1) The notation a ⪯ b means an ≤ bn for all 1 ≤ n ≤ N and the closed
rectangle {u ∈ RN : a ⪯ u ⪯ b} is denoted by [a,b]. Similarly, the notation
Φ ⪯ Ψ implies Φ(s) ≤ Ψ(s) for all s ∈ R.

(2) Let Cb(R,RN) and C3K(R,RN) be the spaces defined by

Cb(R,RN) := {Φ(s) | Φ(s) ∈ C(R,RN) is bounded and uniformly continuous},
C3K(R,RN) := {Φ(s) | Φ(s) ∈ Cb(R,RN) with 0 ⪯ Φ(s) ⪯ 3K for all s ∈ R},
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where 3K = (3k1, · · · , 3kN). Then Cb(R,RN) is a Banach space with the
norm ∥Φ∥ := sups∈R;1≤n≤N |ϕn(s)|.

Throughout this paper, we assume the nonlinearities satisfy the following
assumptions:

(H0) fn(0) > 0 and fn(K) = 0 for all 1 ≤ n ≤ N, where 0 := (0, · · · , 0)
and K := (k1, · · · , kN) is a positive constant vector with kj > 0 for j =
1, · · · , N .

(H1) For any 1 ≤ n ≤ N, fn(x1, · · · , xN) is strictly decreasing with respect to xn
on [0, 3K] and monotone with respect to xj for any j ̸= n on [0, 3K],

(H2) For any 1 ≤ n ≤ N, we have

∂fn(X)

∂xn
kn +

∑
j∈I+n

∂fn(X)

∂xj
kj <

∑
j∈I−n

∂fn(X)

∂xj
kj, for all X ∈ [0, 3K],

where

I+n :=
{
j ̸= n|∂fn(X)/∂xj ≥ 0 for all X ∈ [0, 3K]

}
,

I−n :=
{
j ̸= n|∂fn(X)/∂xj < 0 for all X ∈ [0, 3K]

}
.

(H3) max1≤j≤n{fj(0)} < min1≤j≤n{2fj(0)}.

From (H0), we know that 0 and K are equilibria of (1.1). A traveling wave
solution of systems (1.1) is a solution of the form

un,i(t) = ϕn(i+ ct), (1.5)

for all i ∈ Z, t ∈ R and 1 ≤ n ≤ N, where each ϕn ∈ C1(R,R) and c ∈ R is
called the wave speed. Substituting (1.5) into systems (1.1) and using the moving
coordinate s = i+ ct, we can obtain the following profile equations:

cϕ′
n(s) = dnL(ϕn)(s) + ϕn(s)fn(Φs(−cτn)), (1.6)

where

Φs(−cτn) := (ϕ1(s− cτn,1), · · · , ϕN(s− cτn,N)),

L(ϕn)(s) := ϕn(s− 1)− 2ϕn(s) + ϕn(s+ 1), for all 1 ≤ n ≤ N.

Our goal is to find solutions of (1.6) connecting 0 and K, i.e.

lim
s→−∞

(ϕ1(s), · · · , ϕN(s)) = 0 and lim
s→∞

(ϕ1(s), · · · , ϕN(s)) = K. (1.7)

Based on assumptions (H0)∼(H2), we can show that the nonlinearities of systems
(1.1) satisfy the so-called exponentially mixed quasimonotone condition (see Def-
inition 2.1 or [24]). Employing the cross iterative technique [19,23,24] combining
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with the explicit form of upper-lower solutions of (1.6), we can establish the
existence of traveling waves satisfying (1.7). Note that there are several ecologi-
cal systems satisfying the assumptions (H0) and (H1). Assumption (H2) can be
rewritten by

−∂fn(X)

∂xn
kn >

∑
j∈I+n

∂fn(X)

∂xj
kj +

∑
j∈I−n

−∂fn(X)

∂xj
kj. (1.8)

From the viewpoint of biology, (1.8) means that self-impact of one specie can
dominate other species’ impacts. The condition (H3) is a technical assumption
which can help us to construct a pair of upper-lower solution of (1.6). Here we
illustrate two examples which satisfy the assumptions. If

f1(u1,i, u2,i) = r1 − a11u1,i + a12u2,i, (1.9)

f2(u1,i, u2,i) = r2 − a22u2,i + a21u1,i, (1.10)

then systems (1.1) represent the two species delayed Lotka-Volterra ecological
models, see [18,24]. In addition, if

f1(u1,i, u2,i, u3,i) = b1 − u1,i − αu2,i −
ηu3,i

1 + ω1u1,i
, (1.11)

f2(u1,i, u2,i, u3,i) = b2 − βu1,i − u2,i −
ηu3,i

1 + ω2u2,i
, (1.12)

f3(u1,i, u2,i, u3,i) = b3 − γu3,i +
dηu1,i

1 + ω3u1,i
+

dηu2,i
1 + ω4u2,i

, (1.13)

then systems (1.1) represent the model of one predator-two preys model with
Holling-type II response. In Section 5, we will verify that (1.9)-(1.10) and (1.11)-
(1.13) satisfy assumptions (H0)-(H3) for certain parameters.

Our main results are stated as follows.

Theorem 1.2. Assume (H0)∼(H3) hold. Then there exist c∗ and c∗ with 0 <
c∗ ≤ c∗ such that the following statements hold.

(1) For any c > c∗, there exists one δ > 0 (depending on c) such that if
max{τ1,1, · · · , τN,N} ≤ δ, then (1.6) has a positive solution satisfying (1.7).

(2) For any c < c∗, (1.6) has no positive solutions satisfying (1.7).

Remark 1.3. (1) To establish a pair of upper-lower solution and prove the non-
linearities satisfying the exponentially mixed quasimonotone condition, we need
small time delays condition in part (1) of Theorem 1.2.

(2) Although we apply the techniques similar to those of [24], there are some
significant differences. In [24], the authors established a pair of upper-lower solu-
tion for three specific models to derive the existence of traveling wave solutions.
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In contrast to their results, we construct a pair of upper-lower solutions of sys-
tems (1.1) explicitly for Kolmogorov-type nonlinearities to obtain the existence
of traveling wave solutions.

(3) Our results can be applied to various ecological models, e.g. the cooper-
ative systems [21], the competitive systems [18] and predator-prey systems, and
so on. Moreover, we also prove that the nonexistence of traveling wave solutions
of systems (1.1) satisfying (1.7) when the wave speeds are smaller than c∗.

(4) In [30], the authors considered the existence and non-existence of tran-
sition fronts for a spatially inhomogeneous (with localized inhomogeneity) KPP
equations. The time delay terms considered in our work mimic such a spatially
inhomogeneity as that of [30]. However, due to the general setting of the non-
linearities in our problem, it’s difficult to prove that c∗ = c∗ or explain what
happens between c∗ and c∗. The main difficulty is that our models are quasi-
monotone systems. Note that the study of transition fronts between c∗ and c∗ is
an interesting and challenging problem, we will continue the investigation.

The remainder of this paper is organized as follows. In Section 2, we first
introduce some definitions and notations. Then we prove that the nonlinearities
of (1.1) satisfy the exponentially mixed quasimonotone condition and establish
the existence of a pair of upper-lower solution. Since the construction of a pair
of upper-lower solution is quite complicated, we put the details in the final ap-
pendix. Next, we define the solution operator for equation (1.6) and examine
their properties in Section 3. Applying the results obtained in Sections 2 and 3,
we use the cross iteration scheme and Schauder’s fixed point theorem in Section
4 to prove our main results. In the final section, we apply our results to several
ecological models.

2 Preliminaries

We first introduce some definitions which will be used in the proof of the main
theorem. Then we show the nonlinearities satisfy the exponentially mixed quasi-
monotone condition, and construct a pair of upper-lower solution of (1.6).

Definition 2.1.

(1) Let I be a subset of {1, 2, · · · , N}. Then we denote the function [Φ|ΨI ](s) :=
([Φ|ΨI ]1(s), · · · , [Φ|ΨI ]N(s)) by

[Φ|ΨI ]i(s) =

{
ϕi(s), if i /∈ I,
ψi(s), if i ∈ I.

Similarly, if ψ(s) ∈ C(R,R), we also use the notation [Φ|ψ{n}](s) to repre-
sent the function (ϕ1(s), · · · , ϕn−1(s), ψ(s), ϕn+1(s), · · · , ϕN(s)).
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(2) Let Φ̂(s) := (ϕ̂1(s), · · · , ϕ̂N(s)) and Φ̌(s) := (ϕ̌1(s), · · · , ϕ̌N(s)) be two func-
tions in C3K(R,RN) which are continuously differentiable except for finitely
many s. The function (Φ̂(s), Φ̌(s)) is called a pair of upper-lower solution
of (1.6), respectively, if Φ̌ ⪯ Φ̂ and the following inequalities hold except
for finitely many s:

cϕ̌′
n(s) ≤ dnL(ϕ̌n)(s) + ϕ̌n(s)fn

(
[Φ̌|Φ̂I−n

]s(−cτn)
)
; (2.1)

cϕ̂′
n(s) ≥ dnL(ϕ̂n)(s) + ϕ̂n(s)fn

(
[Φ̂|Φ̌I−n

]s(−cτn)
)
. (2.2)

(3) The functions f1(·), · · · , fN(·) in (1.6) are said to satisfy the exponentially
mixed quasimonotone condition if each fn(x1, · · · , xN) is monotone with
respect to xj for any j ̸= n and there exist positive numbers β̃1, · · · , β̃N
such that

ψ(t)fn([Φ|ψ{n}]t(−cτn))−ϕn(t)fn(Φt(−cτn))
+(cβ̃n − 2dn)(ψ(t)− ϕn(t)) ≥ 0, (2.3)

for any Φ(t) ∈ C3K(R,RN) and ψ(t) ∈ C(R,R) with 0 ≤ ϕn(t) ≤ ψ(t) ≤
3kn and eβ̃nt(ψ(t)− ϕn(t)) is nondecreasing in t.

According to Definition 2.1, we have the following result.

Lemma 2.2. Assume (H1) holds. There exists a τ̃ > 0 such that if τn,n < τ̃ for all
1 ≤ n ≤ N, then f1(·), · · · , fN(·) satisfy the exponentially mixed quasimonotone
condition.

Proof. Assume Φ(t) = (ϕ1(t), · · · , ϕN(t)) ∈ C3K(R,RN), ψ(t) ∈ C(R,R) with

0 ≤ ϕn(t) ≤ ψ(t) ≤ 3kn and all eβ̃nt(ψ(t) − ϕn(t)) are nondecreasing in t. We
only have to find some positive numbers β̃n, n = 1, · · · , N and τ̃ such that (2.3)
holds when τn,n < τ̃ . To this end, we denote

Mn := max
0⪯X⪯3K

{|fn(X)|, |∂fn(X)/∂xn|}, for n = 1, · · ·N.

For each n, it is easy to see that there are positive numbers β̃n and τ̃n such that

cβ̃n − 2dn −Mn − 3eβ̃ncτn,nknMn > 0, for any τn,n < τ̃n. (2.4)

Then, by Mean Value Theorem, we have

(cβ̃n − 2dn)(ψ(t)− ϕn(t)) + ψ(t)fn([Φ|ψ{n}]t(−cτn))− ϕn(t)fn(Φt(−cτn))
=(cβ̃n − 2dn)(ψ(t)− ϕn(t)) + ψ(t)

[
fn([Φ|ψ{n}]t(−cτn))− fn(Φt(−cτn))

]
+

fn(Φt(−cτn))(ψ(t)− ϕn(t))

=(cβ̃n − 2dn)(ψ(t)− ϕn(t)) + ψ(t)
∂fn(ξn)

∂xn

[
ψ(t− cτn,n)− ϕn(t− cτn,n)

]
+

fn(Φt(−cτn))(ψ(t)− ϕn(t)), (2.5)
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for some ξn ∈ [0, 3K] which depends on t. Since eβ̃nt(ψ(t)−ϕn(t)) is nondecreas-
ing, it is clear that

ψ(t− cτn,n)− ϕn(t− cτn,n) ≤ eβ̃ncτn,n
(
ψ(t)− ϕn(t)

)
. (2.6)

Then it follows from (2.5) and (2.6) that

(cβ̃n − 2dn)(ψ(t)− ϕn(t)) + ψ(t)fn([Φ|ψ{n}]t(−cτn))− ϕn(t)fn(Φt(−cτn))

≥(cβ̃n − 2dn −Mn − 3eβ̃ncτn,nknMn)(ψ(t)− ϕn(t)) > 0.

Hence, the assertion follows by taking τ̃ := min{τ̃1, · · · , τ̃N}.

Next, we construct a pair of upper-lower solution of (1.6). To this end, we
first define the characteristic functions ∆n(λ, c) for n = 1, · · · , N by

∆n(λ, c) := −cλ+ dn(e
−λ + eλ − 2) + fn(0). (2.7)

Then the characteristic functions have the following properties.

Lemma 2.3. For any n = 1, · · ·N , there exists a cn > 0 such that the following
statements hold.

(1) If 0 < c < cn then ∆n(λ, c) has no real roots.

(2) If c > cn then ∆n(λ, c) has exactly two positive roots λn,1, λn,2 depending
on c such that λn,1 < λn,2 and

∆n(λ, c)


= 0, if λ = λn,1 or λn,2,

< 0, if λn,1 < λ < λn,2,

> 0, if λ < λn,1 or λ > λn,2.

(2.8)

Proof. (1) For any n = 1, · · · , N , let’s define gn(λ) by

gn(λ) := dn(e
−λ + eλ − 2) + fn(0), for all λ ∈ [0,∞). (2.9)

Then ∆n(λ, c) = −cλ+ gn(λ). Hence the real roots of ∆n(λ, c) are equivalent to
the intersection points of the graphs of cλ and gn(λ). Since gn(λ) is convex, one
can easily verify that there is some cn > 0 such that ∆n(λ, c) has no root for
c < cn and has exactly two positive roots λn,1 and λn,2 satisfying (2.8) for c > cn.

(2) Since ∆n(λ, c) is convex with respect to λ, the result follows from the proof
of part (1).

Lemma 2.4. There exists a c0 > max{c1, · · · , cN} such that

N
∩

n=1

(
λn,1,min{λn,1 + λ1,1, · · · , λn,1 + λN,1, λn,2}

)
(2.10)

is a non-empty set, where cn are defined in Lemma 2.3.

9



Proof. For convenience, we relabel the indices of the nonlinearities such that

fn(0) ≥ fn+1(0) and dn+1 ≤ dn if fn(0) = fn+1(0) (2.11)

for any 1 ≤ n ≤ N − 1. By (H3) and (2.11), we have

f1(0) = max
1≤j≤n

{fj(0)} < min
1≤j≤n

{2fj(0)} = 2fN(0). (2.12)

Moreover, it is easy to see that

lim
c→∞

λn,1 = 0 and lim
c→∞

λn,2 = ∞. (2.13)

We first claim that if c is large enough then

min{2λ1,1, · · · , 2λN,1} > max{λ1,1, · · · , λN,1}. (2.14)

Since h(λ) := d(e−λ−2+eλ) is a convex function and λn,1 is the first intersection
point of h(λ) and the line cλ, there exists a ĉ1 > 0 such that λn,1 ≥ λn+1,1 for
any 1 ≤ n ≤ N − 1 and c > ĉ1. Then, for c > ĉ1, it follows that

max{λn,1, · · · , λN,1} = λ1,1 and min{λn,1, · · · , λN,1} = λN,1. (2.15)

Moreover, by (2.12) and (2.13), we can find a ĉ2 > ĉ1 such that if c > ĉ2 then

d1
(
e−λ1,1 − 2 + eλ1,1

)
− 2dN

(
e−λN,1 − 2 + eλN,1

)
< 2fN(0)− f1(0).

Thus we have

λ1,1 =
d1
(
e−λ1,1 − 2 + eλ1,1

)
+ f1(0)

c
<

2dN
(
e−λN,1 − 2 + eλN,1

)
+ 2fN(0)

c
= 2λN,1

(2.16)
for c > ĉ2. Hence the claim follows from (2.15) and (2.16).

By (2.13), there also exists a c0 > max{ĉ1, ĉ2} such that if c > c0 then

max{λn,1 + λ1,1, · · · , λn,1 + λN,1} < λn,2, for all 1 ≤ n ≤ N. (2.17)

Then (2.17) and (2.14) imply that

min{λn,1 + λ1,1, · · · , λn,1 + λN,1, λn,2} =min{λn,1 + λ1,1, · · · , λn,1 + λN,1}
≥min{2λ1,1, · · · , 2λN,1}
>max{λ1,1, · · · , λN,1}.

Therefore, the set in (2.10) is non-empty. The proof is complete.
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According to Lemma 2.3, we denote the functions Φ̌(t) = (ϕ̌1(t), · · · , ϕ̌N(t))
and Φ̂(t) = (ϕ̂1(t), · · · , ϕ̂N(t)) by

ϕ̌n(t) :=

{
eλn,1t − qeηλn,1t, if t < tn,
kn − (kn − mn

σ
)e−γt, if t ≥ tn,

(2.18)

ϕ̂n(t) :=

{
eλn,1t + qkne

κt, if t < t̂n,
kn + kne

−γt, if t ≥ t̂n,
(2.19)

where q, η,mn, σ, κ, γ, tn and t̂n are constants which will be decided in Appendix
A. The graphs of each component of Φ̌(t) and Φ̂(t) are illustrated in Figure ??.
If c is large enough then we can show that (Φ̌n(t), Φ̌(t)) is a pair of upper-lower
solution of (1.6).

Lemma 2.5. There exist positive constants c̃, β1, · · · , βN , τ ∗ with each βn > β̃n
such that if c > c̃ and τn,n < τ ∗ for all 1 ≤ n ≤ N then (Φ̂(t), Φ̌(t)) forms a pair

of upper-lower solution of (1.6) and eβnt(ϕ̌n(t)− ϕ̂n(t)) is nondecreasing in t.

Proof. Since the proof requires many tedious computations, we put the details in
Appendix A.

Remark 2.6. (1) The main motivation for constructing the upper-lower solution
of (1.6) arises from the work [16]. The authors of [16] considered the existence of
traveling wave solutions for some scalar quasimonotone lattice dynamical systems
by using the monotone iteration method combining with a pair of upper-lower
solution. Different to (2.18) and (2.19), they constructed the upper and lower
solutions in the form

U(s) =


x+ if t ≥ 0,

x+eσt if t ≤ 0,
and L(t) =


0 if t ≥ t0,

ζ(1− heϵt)eσt if t ≤ s0,
(2.20)

where 0 and x+ are equilibria, t0 < 0 and σ, ζ, h, ϵ are positive constants. Note
that, for large t, U(t) and L(t) equal to the equilibria x+ and 0 respectively.
Unfortunately, since the nonlinearities of (1.1) are not quasimonotonic, we can
not apply (2.20) directly to our problem. Therefore, by Lemmas 2.3 and 2.4, we
modify the functions in (2.20) for large t into the form (2.18) and (2.19). Roughly
speaking, we assume the upper and lower solutions have exponential decay rates
for large |t|. It’s not difficult to verify (Φ̌n(t), Φ̌(t)) satisfy the inequalities (2.1)
and (2.2) when |t| is large enough. However, due to the non-quasimonotonicity of
the systems, we have to adjust the corresponding parameters carefully to ensure
(Φ̌n(t), Φ̌(t)) satisfy the inequalities (2.1) and (2.2) when t ∈ [tn, t̂n] (see Appendix
A.1-A.4). In fact, in our previous work [18], we also used such functions (2.18)
and (2.19) to obtain the existence of traveling plane wave solutions of delayed
lattice differential systems in competitive Lotka-Volterra type.

(2) Since βn > β̃n for all n, from Lemma 2.2, it is easy to see that

ψ(t)fn([Φ|ψ{n}]t(−cτn))−ϕn(t)fn(Φt(−cτn)) + (cβn − 2dn)(ψ(t)− ϕn(t)) > 0,
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for any Φ(t) ∈ C3K(R,RN), ψ(t) ∈ C(R,R) with 0 ≤ ϕn(t) ≤ ψ(t) ≤ 3kn and
eβnt(ψ(t)− ϕn(t)) is nondecreasing in t.

3 Properties of Solution Operator

To prove the existence of traveling wave solutions by Schauder’s fixed point the-
orem, in this section we define the solution operator of the profile equations (1.6)
and investigate its properties.

First, we denote the operators H(Φ)(s) = (H1(Φ)(s), · · · , HN(Φ)(s)) and
G(Φ)(s) = (G1(Φ)(s), · · · , GN(Φ)(s)) on C3K(R,RN) by

Hn(Φ)(s) :=
1

c

{
dnL(ϕn)(s) + ϕn(s)fn(Φs(−cτn))

}
+ βnϕn(s),

Gn(Φ)(s) := e−βns

∫ s

−∞
eβnzHn(Φ)(z)dz,

where s ∈ R, 1 ≤ n ≤ N , Φ(s) = (ϕ1(s), · · · , ϕN(s)) ∈ C3K(R,RN) and all βn
are the numbers defined in Lemma 2.5. It is clear that the profile equations (1.6)
can be rewritten in the form

ϕ′
n(s) + βnϕn(s)−Hn(Φ)(s) = 0

for each n, and any fixed point of the operator G is a solution of (1.6). Moreover,
let (Φ̂, (s)Φ̌(s)) be the pair of upper-lower solution (1.6) defined by Lemma 2.5,
then it’s easy to verify that

ϕ̂′
n(s)−Hn([Φ̂|Φ̌I−n

])(s) + βnϕ̂n(s) ≥ 0, (3.1)

ϕ̌′
n(s)−Hn([Φ̌|Φ̂I−n

])(s) + βnϕ̌n(s) ≤ 0. (3.2)

Some essential properties of the operator G(·) are established in the sequel.

Lemma 3.1. Let c > 0 be fixed. Then the operator G(·) is continuous on
C3K(R,RN) with respect to the sup-norm ∥ · ∥.

Proof. First, we claim that G(Φ)(s) ∈ Cb(R,RN) for all Φ(s) ∈ C3K(R,RN).
According to the definition of G(Φ)(s), it is obvious that G(Φ)(s) is bounded.
Therefore, we only need to prove that G(Φ)(s) is uniformly continuous.

For any 1 ≤ n ≤ N and s, h ∈ R, we have

|Gn(Φ)(s+ h)−Gn(Φ)(s)|

=|e−βn(s+h)

∫ s+h

−∞
eβnzHn(Φ)(z)dz − e−βns

∫ s

−∞
eβnzHn(Φ)(z)dz|.
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If h < 0 then

|e−βn(s+h)

∫ s+h

−∞
eβnzHn(Φ)(z)dz − e−βns

∫ s

−∞
eβnzHn(Φ)(z)dz|

≤(e−βnh − 1)

∫ s+h

−∞
eβn(z−s)|Hn(Φ)(z)|dz +

∫ s

s+h

eβn(z−s)|Hn(Φ)(z)|dz. (3.3)

Note that there is someM > 0 such that |Hn(Φ)(s)| < M for all s ∈ R, 1 ≤ n ≤ N
and Φ(s) ∈ C3K(R,RN). Therefore, (3.3) implies that each Gn(Φ)(s) is uniformly
continuous on R. Similarly, if h > 0, we can also obtain the same result. Hence,
all Gn(Φ)(s) are uniformly continuous.

Next, we show that G(·) is continuous. Let Φ(s) = (ϕ1(s), · · · , ϕN(s)), Ψ(s) =
(ψ1(s), · · · , ψN(s)) ∈ C3K(R,RN). It is easy to see that

∥H(Φ)−H(Ψ)∥ = sup
s∈R;1≤n≤N

|Hn(Φ)(s)−Hn(Ψ)(s)| (3.4)

≤ sup
s∈R;1≤n≤N

|ϕn(s)fn
(
Φs(−cτn)

)
− ψn(s)fn

(
Ψs(−cτn)

)
|

c
(3.5)

+ (
4dn
c

+ βn)∥Φ−Ψ∥. (3.6)

By the continuity of fn and the compactness of [0, 3K], all fn are uniformly
continuous on [0, 3K]. Therefore, by (3.4), the operator H(·) is continuous.
Since

∥G(Φ)−G(Ψ)∥ = sup
s∈R;1≤n≤N

|Gn(Φ)(s)−Gn(Ψ)(s)|

≤ sup
s∈R;1≤n≤N

e−βns

∫ s

−∞
eβnz|Hn(Φ)(z)−Hn(Ψ)(z)|dz

≤ sup
s∈R;1≤n≤N

∥Hn(Φ)−Hn(Ψ)∥(e−βns

∫ s

−∞
eβnzdz)

≤( max
1≤n≤N

1

βn
)∥H(Φ)−H(Ψ)∥,

one can see that G(·) is also continuous. The proof is complete.

Next, let Γ(Φ̌, Φ̂) be the set of functions Φ(s) = (ϕ1(s), · · · , ϕN(s)) satisfying
the following two properties:

(1) Φ(s) ∈ C3K(R,RN) with Φ̌ ⪯ Φ ⪯ Φ̂;

(2) eβns[ϕ̂n(s)− ϕn(s)] and e
βns[ϕn(s)− ϕ̌n(s)] are both nondecreasing for 1 ≤

n ≤ N.

Note that (Φ̌(s), Φ̂(s)) is a pair of upper-lower solution of (1.6). Some properties
of Gn(·) on Γ(Φ̌, Φ̂) are further illustrated in the following lemmas.

13



Lemma 3.2. Let c > 0 and Φ(s) ∈ Γ[Φ̌, Φ̂] be fixed. Then we have

ϕ̌n(s) ≤ Gn[Φ̌|Φ̂I−n
](s) ≤ Gn(Φ)(s) ≤ Gn[Φ̂|Φ̌I−n

](s) ≤ Φ̂(s), (3.7)

for any s ∈ R and 1 ≤ n ≤ N.

Proof. We only prove Gn(Φ)(s) ≤ Gn[Φ̂|Φ̌I−n
](s) ≤ ϕ̂n(s) for any s ∈ R and

1 ≤ n ≤ N. For the remainder part of (3.7), one can also prove it by the same
arguments. By the definition of G(·) and inequality (3.1), we can obtain

Gn[Φ̂|Φ̌I−n
](s) = e−βns

∫ s

−∞
eβnzHn[Φ̂|Φ̌I−n

](z) dz

≤ e−βns

∫ s

−∞
eβnz

(
ϕ̂′
n(z) + βnϕ̂n(z)

)
dz = ϕ̂n(s).

To prove Gn(Φ)(s) ≤ Gn[Φ̂|Φ̌I−n
](s), it is sufficient to show that

Hn(Φ)(s) ≤ Hn[Φ̂|Φ̌I−n
](s). (3.8)

By direct computations, we have

cHn([Φ̂|Φ̌I−n
])(s)− cHn(Φ)(s)

=dnL(ϕ̂n)(s) + ϕ̂n(s)fn
(
[Φ̂|Φ̌I−n

]s(−cτn)
)
+ cβnϕ̂n(s)− dnL(ϕn)(s)−

ϕn(s)fn
(
Φs(−cτn)

)
− cβnϕn(s)

≥ϕ̂n(s)fn
(
[Φ̂|Φ̌I−n

]s(−cτn)
)
− ϕn(s)fn

(
[Φ̂|Φ̌I−n

|(ϕn){n}]s(−cτn)
)
− ϕn(s)fn

(
Φs(−cτn)

)
+ ϕn(s)fn

(
[Φ̂|Φ̌I−n

|(ϕn){n}]s(−cτn)
)
+ (cβn − 2dn)(ϕ̂n(s)− ϕn(s)),

where

[Φ̂|Φ̌I−n
|(ϕn){n}]j =


ϕn, if j = n,

ϕ̂j, if j ∈ I+n ,

ϕ̌j, if j ∈ I−n .

Since ϕn(s) ≤ ϕ̂n(s) for all s ∈ R, it follows from Remark 2.6 that

0 ≤(cβn − 2dn)(ϕ̂n(s)− ϕn(s)) + ϕ̂n(s)fn
(
[Φ̂|Φ̌I−n

]s(−cτn)
)
−

ϕn(s)fn
(
[Φ̂|Φ̌I−n

|(ϕn){n}]s(−cτ )
)
. (3.9)

Moreover, by Mean Value Theorem and (H1), we have

ϕn(s)fn
(
[Φ̂|Φ̌I−n

|(ϕn){n}]s(−cτ )
)
− ϕn(s)fn

(
Φs(−cτn)

)
=ϕn(s)

∑
j∈I+n

∂fn
∂xj

(ξ)
(
ϕ̂j(s− cτn,j)− ϕj(s− cτn,j)

)
+

ϕn(s)
∑
j∈I−n

∂fn
∂xj

(ξ)
(
ϕ̌j(s− cτn,j)− ϕj(s− cτn,j)

)
≥ 0. (3.10)

Then (3.9) and (3.10) imply that Hn[Φ̂|Φ̌I−n
](s) − Hn(Φ)(s) ≥ 0 for all s. The

proof is complete.
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Lemma 3.3. Let c > 0 be fixed. Then the operator G : Γ(Φ̌, Φ̂) → Γ(Φ̌, Φ̂) is
compact.

Proof. We first show that G(Γ(Φ̌, Φ̂)) ⊂ Γ(Φ̌, Φ̂). Suppose Φ = (ϕ1, · · · , ϕN) ∈
Γ(Φ̌, Φ̂), then Lemma 3.2 implies that Φ̌ ⪯ G(Φ) ⪯ Φ̂. By (3.1) and (3.8) and
direct computations, we have

d

ds
eβns[ϕ̂n(s)−Gn(Φ)(s)]

=eβns
[
βnϕ̂n(s) + ϕ̂′

n(s)−Hn(Φ)(s)
]

≥eβns
[
βnϕ̂n(s) + ϕ̂′

n(s)−Hn([Φ̂|Φ̌I−n
])(s) +Hn([Φ̂|Φ̌I−n

])(s)−Hn(Φ)(s)
]

≥0

for all except finite s. Hence all eβns[ϕ̂n(s) − Gn(Φ)(s)] are nondecreasing for
any s ∈ R. Similarly, all eβns[Gn(Φ)(s) − ϕ̌n(s)] are also nondecreasing. Hence
G(Γ(Φ̌, Φ̂)) ⊂ Γ(Φ̌, Φ̂).

The proof of compactness of operator G is similar to the proof in [23], so we
omit it here.

4 Existence and Nonexistence for TravelingWave

Solutions

Before to prove Theorem 1.2, we first provide two important lemmas which play
important roles in estimating the lower bound of wave speeds.

Lemma 4.1. (See [6, Theorem 4].) Let c > 0 and B(·) be a continuous function
such that lim

x→±∞
B(x) = B(±∞) < ∞. Suppose z(·) is a measurable function

satisfying

cz(x) = e
∫ x+1
x z(s)ds + e

∫ x−1
x z(s)ds +B(x) for all x ∈ R,

then z is uniformly continuous and bounded. Moreover, the limits lim
x→±∞

z(x) =

ω± exist and which are real roots of the equation

cω = eω + e−ω +B(±∞).

Lemma 4.2. Suppose (1.6) has a positive solution satisfying (1.7), then c > 0.

Proof. Let Φ = (ϕ1, · · · , ϕN) be a positive solution of equations (1.6) satisfying
(1.7), then lim

t→−∞
Φ(t) = 0. Note that fn(0) > 0 and

fn(Φt(−cτn)) = fn(ϕ1(t− cτn,1), · · · , ϕN(t− cτn,N)).
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The continuity of fn implies that

lim
t→−∞

fn(Φt(−cτn)) = lim
t→−∞

fn(ϕ1(t− cτn,1), · · · , ϕN(t− cτn,N))

= fn( lim
t→−∞

ϕ1(t− cτn,1), · · · , lim
t→−∞

ϕN(t− cτn,N)) = fn(0).

Then there exists a L̂ ∈ R such that fn(Φt(−cτn)) > fn(0)/2 for t ∈ (−∞, L̂)
and 1 ≤ n ≤ N. It’s easy to check that the integrals∫ L

−∞
ϕ′
n(t)dt,

∫ L

−∞
ϕn(t− 1)− ϕn(t)dt and

∫ L

−∞
ϕn(t+ 1)− ϕn(t)dt (4.1)

exist. Since Φ satisfies (1.6), by (4.1), the integral∫ L

−∞
ϕn(t)fn(Φt(−cτn))dt (4.2)

also exists, which implies that
∫ ξ

−∞ ϕn(t)dt converges for all ξ ∈ (−∞, L̂). Now we

define Rn(ξ) :=
∫ ξ

−∞ ϕn(t)dt for all ξ ∈ (−∞, L̂). Since each ϕn > 0, then Rn(ξ) is
increasing, R′

n(ξ) = ϕn(ξ) and lim
ξ→−∞

Rn(ξ) = 0. By direct computations, we have

cϕn(ξ) ≥ dn

∫ ξ+1

ξ

ϕn(t)dt− dn

∫ ξ

ξ−1

ϕn(t)dt+
fn(0)

2

∫ ξ

−∞
ϕn(t)dt. (4.3)

Then, integrating (4.3) over (−∞, L̂), we obtain that c > 0. The proof is com-
plete.

Proof of Theorem 1.2.

(1). Let c∗ := c̃ and δ := min{τ ∗, τ̃}, where c̃ is defined by (A.1), τ̃ is defined
in Lemma 2.2 and τ ∗ are defined in Lemma 2.5. We assume that c > c∗ and
τn,n < δ for all n. Then the statements in Lemma 2.5 hold. By Lemmas 3.1,
3.3 and the Schauder’s fixed point theorem, (1.6) has a positive solution Φ(t) =
(ϕ1(t), · · · , ϕN(t)). On the other hand, by Lemma 2.5 again, the upper- and lower
solutions satisfy (1.7). Therefore, it is easy to see that Φ(t) satisfies the conditions
(1.7).

(2). Let c∗ := min{cn | 1 ≤ n ≤ N}, where each cn is defined in Lemma
2.3. For c < c∗, we claim that (1.6) has no positive solution (with c as the
parameter) satisfying the conditions of (1.7). Suppose the claim is false, i.e.
there exists a solution of (1.6) satisfying (1.7) with c < c∗. Without loss of
generality, we may assume that c∗ = c1. According to Lemma 4.2, we have c > 0.
Let ρ(t) := ϕ′

1(t)/ϕ1(t). By the equation (1.6) (with n = 1), we know that

cρ(t) = d1(e
∫ t+1
t ρ(s)ds + e

∫ t−1
t ρ(s)ds − 2) + f1(Φt(−cτ1)) = 0.

The result of Lemma 4.1 implies the equation

−cλ+ d1(e
−λ + eλ − 2) + f1(0) = 0

has one real root. Thus the definition of c1 implies that c ≥ c1 = c∗, which gives
a contradiction. Hence the claim follows and the proof is complete.
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5 Applications

In this section, we will apply our main theorem to show the existence of traveling
wave solutions for various types of lattice reaction-diffusion systems. For conve-
nience, we use the notation D[ui](t) := ui−1(t)− 2ui(t) + ui+1(t) in the sequel of
this section.

5.1 A Delayed Food-Limited Population Model

The discrete food-limited population model with delay can be described by

u′i(t) = dD[ui](t) +
ui(t)[K − ui(t− τ)]

K + γui(t− τ)
, (5.1)

where t ∈ R, i ∈ Z, d,K > 0 and τ, γ ≥ 0.

The simplest version of system (5.1) with d = γ = τ = 0 is the well-known
logistic system with the environmental carrying capacity K. When γ is positive
and d = τ = 0, the equation

u′(t) =
u(t)[K − u(t)]

K + γu(t)
(5.2)

was first proposed by Smith [33] as a food-limited mathematical model for pop-
ulation of daphnia magna. Moreover, equation (5.2) can also describe the effect
of environmental toxicants on aquatic populations, see [15]. In the past, there
are many mathematical results for equation (5.2). For examples, the global at-
tractivity of trivial solution was studied in [11, 25, 26]; the oscillation of positive
solutions, and the global attractivity of the positive equilibrium K with or with-
out delay were investigated in [13, 34]. Furthermore, the delayed food-limited
population model incorporating spatial dispersal was studied in [12,31,32].

Recently, the existence of traveling wave solutions for (5.1) was investigated
by Huang, Lu, and Zou [20]. The authors proved the existence of traveling wave
solutions connecting the trivial solution and the positive equilibriumK. However,
by Theorem 1.2, we not only obtain the existence result of traveling wave solutions
as in [20], but also derive the non-existence of traveling wave solutions.

More precisely, let ϕ(t) be a traveling wave solution of (5.1) connecting 0 and
K, the profile equation yields

ϕ′(t) = d(ϕ(t− 1)− 2ϕ(t) + ϕ(t+ 1)) + ϕ(t)
K − ϕ(t− cτ)

K + γϕ(t− cτ)
, t ∈ R. (5.3)

Then we look for solutions of (5.3) satisfying the following conditions:

lim
t→−∞

ϕ(t) = 0 and lim
t→∞

ϕ(t) = K. (5.4)

It is easy to check that the assumptions (H0)∼(H3) hold. Hence we obtain the
results stated in Theorem 1.2 for the food-limited population model.
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5.2 Two Species Delayed Lotka-Volterra Ecological Mod-
els

The two species delayed Lotka-Volterra ecological model can be described by the
following system: u′i(t) = d1D[ui](t) + ui(t)

(
r1 − a11ui(t− τ1) + a12vi(t− τ2)

)
,

v′i(t) = d2D[vi](t) + vi(t)
(
r2 − a22vi(t− τ̂1) + a21ui(t− τ̂2)

)
,

(5.5)

where i ∈ Z, t ∈ R, dn, rn, ann > 0, τ̂n, τn ≥ 0 and a12, a21 ̸= 0.

System (5.5) arises from the study of the interaction between two species
with discrete diffusion or migration when the habitat is of one-dimensional and
divided into niches. According to the signs of parameters a12 and a21, one can
distinguish (5.5) into three types: cooperative, competitive and predator-prey.
Recently, traveling wave solutions for competitive type has been studied in [14,18].

Here we apply Theorem 1.2 to (5.5) for N = 2. Without loss of generality, we
may assume

r2 ≤ r1 < 2r2, (5.6)

a11a22 − a12a21 > 0, r1a22 + r2a12 > 0 and r2a11 + r1a21 > 0. (5.7)

By direct computations, it is clear that

(k1, k2) =
( r1a22 + r2a12
a11a22 − a12a21

,
r2a11 + r1a21
a11a22 − a12a21

)
is the positive equilibrium of (5.5). It’s easy to see that assumptions (H0), (H1)
and (H3) hold. Therefore, we only have to verify assumption (H2). Note that
inequalities in (H2) can be represented as the following form:

a11k1 > |a12|k2 and a22k2 > |a21|k1. (5.8)

Then we consider the following four cases:

◦ Assume a12 > 0 and a21 > 0.

By the formula of (k1, k2) and (5.7), the condition (5.8) hold.

◦ Assume a12 > 0 and a21 < 0.

By the formula of (k1, k2), the condition (5.8) is equivalent to

−2a21a22r1 < (a11a22 + a12a21)r2. (5.9)

◦ Assume a12 < 0 and a21 > 0.

By the formula of (k1, k2), the condition (5.8) is equivalent to

−2a11a12r2 < (a12a21 + a11a22)r1. (5.10)

◦ Assume a12 < 0 and a21 < 0.

By the formula of (k1, k2), the condition (5.8) is equivalent to (5.9) and (5.10).
Thus, we have the following result immediately.
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Theorem 5.1. Assume (5.6) and (5.7) hold. Then the statements of Theorem
1.2 hold for system (5.5) if one of the following conditions holds:

(1) a12 > 0 and a21 > 0;

(2) a12 > 0, a21 < 0 and condition (5.9) holds;

(3) a12 < 0, a21 > 0 and condition (5.10) holds;

(4) a12 < 0, a21 < 0 and conditions (5.9) and (5.10) hold.

5.3 A Discrete Predator-Prey Model with Modified Leslie-
Gower and Holling-Type II Schemes

The discrete predator-prey model with modified Leslie-Gower and Holling-Type
II schemes can be described by

dui(t)

dt
= d1D[ui](t) + ui(t)

[
a1 − bui(t− τ1)−

α1vi(t− τ2)

ui(t− τ1) + γ1

]
,

dvi(t)

dt
= d2D[vi](t) + vi(t)

[
a2 −

α2vi(t− τ̂1)

ui(t− τ̂2) + γ2

]
,

(5.11)

where i ∈ Z, t ∈ R, τ1, τ2, τ̂1, τ̂2 ≥ 0 and all parameters d1, d2, a1, a2, α1, α2, γ1, γ2, b
are positive. System (5.11) can be regarded as the discrete version of the system

ut(x, t) = d1uxx(x, t) + u(x, t)
[
a1 − bu(x, t− τ1)−

α1v(x, t− τ2)

u(x, t− τ1) + γ1

]
,

vt(x, t) = d2vxx(x, t) + v(x, t)
[
a2 −

α2v(x, t− τ̂1)

u(x, t− τ̂2) + γ2

]
.

(5.12)

If d1 = d2 = 0, then the ODE system
du

dt
= u(a1 − bu− α1v

u+ γ1
),

dv

dt
= v(a2 −

α2v

u+ γ2
).

(5.13)

was first introduced by [1]. The authors of [1] studied the boundedness of solu-
tions, existence of an attracting set and global stability of the coexisting interior
equilibrium. Later, Zhou [38] considered the steady-state solutions of (5.12) for
bounded domain Ω with a smooth boundary.

To apply our main result to system (5.11), we assume

d1 = d2 = d, a1 = a2 = a, γ1 = γ2 = 1 (5.14)

and denote

(k1, k2) :=
(aα2 − aα1

bα2

,
a2α2 − a2α1 + abα2

bα2
2

)
.
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One can easily verify that assumptions (H0)∼(H3) hold if and only if

α2 > α1, α1k2 < b, α1k2(k1 + 1) < a(1− α1

α2

) and k1 < 1. (5.15)

In fact, the condition (5.15) holds when α2 and b are large and α1 is small. Thus,
we have the following result immediately.

Theorem 5.2. Assume (5.14) holds. If α1 is small and α2, b are large enough
such that (5.15) holds, then the statements of Theorem 1.2 hold for system (5.11).

5.4 One Predator-Two Preys Model with Holling-Type II
Response and Diffusion

Finally, we provide a one predator-two preys model with Holling-type II response
and diffusion to illustrate our main result. The model is described as follows

dxi(t)

dt
= d1D[xi](t) + xi(t)

[
b1 − xi(t− τ1)− αyi(t− τ2)−

ηzi(t− τ3)

1 + ω1xi(t− τ1)

]
,

dyi(t)

dt
= d2D[yi](t) + yi(t)

[
b2 − βxi(t− τ̂1)− yi(t− τ̂2)−

ηzi(t− τ̂3)

1 + ω2yi(t− τ̂2)

]
,

dzi(t)

dt
= d3D[zi](t) + zi(t)

[
b3 +

dηxi(t− τ̄1)

1 + ω3xi(t− τ̄1)
+

dηyi(t− τ̄2)

1 + ω4yi(t− τ̄2)
− γzi(t− τ̄3)

]
,

(5.16)

where i ∈ Z, t ∈ R and all parameters di, d, bi, α, β, γ, ωi are all nonnegative.

If b3 < 0, ω1 = ω3, ω2 = ω4 and d1 = · · · = d3 = γ = 0, the dynamics of the
following ODE system

dx(t)

dt
= x(t)

[
b1 − x(t)− αy(t)− ηz(t)

1 + ω1x(t)

]
,

dy(t)

dt
= y(t)

[
b2 − βx(t)− y(t)− ηz(t)

1 + ω2y(t)

]
,

dz(t)

dt
= z(t)

[
b3 +

dηx(t)

1 + ω1x(t)
+

dηy(t)

1 + ω2y(t)

]
,

(5.17)

have been considered in [35]. To apply Theorem 1.2 to (5.16), we assume b1, b2
and b3 are positive numbers,

max
i=1,2,3

{bi} < 2 min
i=1,2,3

{bi}, α = β = ω3 = ω4 = 0, dη2 = 1 and
√
γ > max{ω1, ω2}.

(5.18)
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Then system (5.16) can be rewritten as the form

dxi(t)

dt
= d1D[xi](t) + xi(t)

[
b1 − xi(t− τ1)−

ηzi(t− τ3)

1 + ω1xi(t− τ1)

]
,

dyi(t)

dt
= d2D[yi](t) + yi(t)

[
b2 − yi(t− τ̂2)−

ηzi(t− τ̂3)

1 + ω2yi(t− τ̂2)

]
,

dzi(t)

dt
= d3D[zi](t) + zi(t)

[
b3 + xi(t− τ̄1)/η + yi(t− τ̄2)/η − γzi(t− τ̄3)

]
,

(5.19)

To find the positive equilibrium of (5.19) is equivalent to find the positive solution
of the following system

γb1 − ηb3 + (γω1b1 − γ − 1)x− γω1x
2 = y,

γb2 − ηb3 + (γω2b2 − γ − 1)y − γω2y
2 = x,

b3 + x/η + y/η = γz.
(5.20)

Under the assumptions

b1ω1γ − γ − 1, b2ω2γ − γ − 1 > 0, (5.21)[
b2ω2γ−γ−1+

√
(b2ω2γ − γ − 1)2 + 4γω2(γb2 − ηb3)

]
/2γω2 < γb1−ηb3, (5.22)[

b1ω1γ−γ−1+
√
(b1ω1γ − γ − 1)2 + 4γω1(γb1 − ηb3)

]
/2γω1 < γb2−ηb3, (5.23)

it is easy to check that (5.20) has a unique positive solution. Note that (5.21),
(5.22) and (5.23) hold for large γ, ω1 and ω2, since

lim
γ→∞

γb1 − ηb3 = lim
γ→∞

γb2 − ηb3 = ∞, (5.24)

lim
γ,ω1→∞

b1ω1γ − γ − 1 = lim
γ,ω2→∞

b2ω1γ − γ − 1 = ∞, (5.25)

lim
γ,ω2→∞

b2ω2γ − γ − 1 +
√
(b2ω2γ − γ − 1)2 + 4γω2(γb2 − ηb3)

2γω2

= b2, (5.26)

lim
γ,ω1→∞

b1ω1γ − γ − 1 +
√
(b1ω1γ − γ − 1)2 + 4γω1(γb1 − ηb3)

2γω1

= b1. (5.27)

In other words, if γ, ω1 and ω2 are large enough, then (H0) holds. Furthermore,
one can verify that (H1) and (H2) also hold for large γ, ω1 and ω2. In conclusion,
if γ, ω1 and ω2 are large enough and (5.18) is true, then (H0)∼(H3) hold. Thus,
we have the following result.

Theorem 5.3. Assume (5.18) holds. If γ, ω1 and ω2 are large enough, then the
statement of Theorem 1.2 holds for system (5.16).
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A Appendix

In this appendix, we will prove the result of Lemma 2.5. Let’s recall that λn,1,
λn,2, cn, c0 and β̃1, · · · , β̃N are the numbers defined in Lemma 2.3, Lemma 2.4
and Lemma 2.2 respectively. Then we define the number c̃ by

c̃ := max{c1, · · · , cN , c0}. (A.1)

For any fixed c > c̃, we further introduce two numbers η and κ which satisfy

1 < η < min
{λn,2
λn,1

,
λn,1 + λm,1

λn,1
| 1 ≤ n,m ≤ N

}
≤ 2; (A.2)

κ ∈
N
∩

n=1

(
λn,1, min

1≤j≤N
{λn,1 + λj,1, λn,2}

)
. (A.3)

Note that κ is well-defined by Lemma 2.4. Let Φ̌(s) = (ϕ̌1(s), · · · , ϕ̌N(s)) and
Φ̂(s) = (ϕ̂1(s), · · · , ϕ̂N(s)) be the functions defined by (2.18) and (2.19) respec-
tively. If tn, t̂n ∈ R are fixed, then it is easy to see that (Φ̌(s), Φ̂(s)) satisfies
(1.7) for any γ > 0. To show that (Φ̂(s), Φ̌(s)) is a pair of upper-lower solution of
(1.6) and eβnt(ϕ̌n(t)− ϕ̂n(t)) is nondecreasing in t, we first provide the following
lemma.

Lemma A.1. For any fixed n, there exist positive numbers ζn,1, · · · , ζn,N , Ln such
that

∂fn(X)

∂xn
knζn,n +

∑
j∈I+n

∂fn(X)

∂xj
kjζn,j +

∑
j∈I−n

−∂fn(X)

∂xj
kjζn,j < −Ln (A.4)

for all 0 ⪯ X ⪯ 3K, where the positive constants ζn,n ∈ (0, 1), ζn,j ∈ (1,∞) for
j ̸= n,

I+n := {j ̸= n|∂fn/∂xj ≥ 0} and I−n := {j ̸= n|∂fn/∂xj < 0}.

Proof. Since [0, 3K] is compact and ∂fn/∂xj is continuous for any 1 ≤ n, j ≤ N,
(H1) and (H2) imply that

0 ≤ max
0⪯X⪯3K

{(∑
j∈I+n

∂fn(X)

∂xj
kj −

∑
j∈I−n

∂fn(X)

∂xj
kj
)
/
(
− ∂fn(X)

∂xn
kn
)}

< 1.

Then there exists a rational number p2/p1 > 1 with p1, p2 > 0 such that

0 ≤ p2
p1

· max
0⪯X⪯3K

{(∑
j∈I+n

∂fn(X)

∂xj
kj −

∑
j∈I−n

∂fn(X)

∂xj
kj
)
/
(
− ∂fn(X)

∂xn
kn
)}

< 1.

Moreover, for any r ∈ (p1, p2), we have

∂fn(X)

∂xn
kn
p1
r

+
∑
j∈I+n

∂fn(X)

∂xj
kj
p2
r

+
∑
j∈I−n

−∂fn(X)

∂xj
kj
p2
r
< 0.
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Let

ζn,j =

{
p1/r, if j = n,
p2/r, if j ̸= n,

by the continuity of each ∂fn/∂xj and the compactness of [0, 3K] again, the
assertion of the lemma follows.

According to the above lemma, we will choose the parameters q,mn, βn, σ, γ,
tn, t̂n, τ

∗ suitably in the sequel.

A.1 The choice of q and mn

For any q > 0 and 1 ≤ n ≤ N, we define two functions as follows

ȟn,q(t) := eλn,1t − qeηλn,1t and ĥn,q(t) := eλn,1t + qkne
κt.

By direct computations, one can verify that ȟn,q(ť
∗
n,q) = 0 and ȟn,q(t) has a unique

global maximum mn,q at t = ťn,q, where

mn,q := (1− 1

η
)(

1

qη
)

1
η−1 , ťn,q :=

1

λn,1(η − 1)
ln(

1

qη
), ť∗n,q :=

1

λn,1(η − 1)
ln

1

q
.

Moreover, one can also verify that there are real numbers t̂n,q and t̂∗n,q such that

ĥn,q(t̂n,q) = kn and ĥn,q(t̂
∗
n,q) = 3kn.

It is clear that

lim
q→∞

ťn,q = lim
q→∞

ť∗n,q = lim
q→∞

t̂n,q = lim
q→∞

t̂∗n,q = −∞. (A.5)

By (A.5), we have the following lemma.

Lemma A.2. There exists a positive constant q∗ > 1 such that if q > q∗ then the
following inequalities hold:

(1) t̂∗n,q + c, ť∗n,q + c ≤ 0;

(2) q∆n(ηλn,1, c)e
ηλn,1t +Meλn,1t

[
eλn,1t +

∑
j∈I−n

(eλj,1t + qkje
κt)

]
≤ 0, for t < ť∗n,q;

(3) q∆n(κ, c)kne
κt +M(eλn,1t + qkne

κt)
∑
j∈I+n

eλj,1t ≤ 0, for t < t̂∗n,q,

where 1 ≤ n ≤ N and M is a constant defined by

M := max
1≤n,j≤N

max
0⪯X⪯3K

|∂fn(X)/∂xj|.
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Proof. (1) By (A.5), it is easy to see that the result holds if q is large enough.

(2) By (A.2) and part (1) of Lemma 2.3, we have q∆n(ηλn,1, c) < 0. Then, it
follows from (A.2) and (A.3) that

ηλn,1 < min{2λn,1, λn,1 + λ1,1, · · · , λn,1 + λN,1, λn,1 + κ}.

Therefore, there exists a T < 0 such that if t < T then

q∆n(ηλn,1, c)e
ηλn,1t +Meλn,1t

[
eλn,1t +

∑
j∈I−n

(eλj,1t + qkje
κt)

]
≤ 0.

By (A.5), if q is large enough, we have ť∗n,q < T for all 1 ≤ n ≤ N. The proof is
complete.

(3) The assertion of this part follows by the same arguments as the proof of
part (2). Hence we skip the details.

Hereinafter, we always assume q and mn be the numbers satisfying the fol-
lowing condition:

(N1) q > q∗ and mn := mn,q.

A.2 The choice of βn and σ

Lemma A.3. For any fixed q > q∗, there are positive numbers β∗
1 , · · · , β∗

N and
σ∗ > 0 such that

βn + λn,1
knβn

eλn,1 ťn,q +
(βn + κ)q

βn
eκťn,q > 1− (kn −mn/σ)(βn − γ)

knβn

for βn > β∗
n, σ > σ∗ and γ ∈ (0, 1).

Proof. Since q is fixed, we have

lim
σ,βn→∞

(kn −mn/σ)(βn − γ)

knβn
= 1, for any γ ∈ (0, 1).

Note that the above convergence is uniform with respect to γ ∈ (0, 1). Therefore,
one can easily obtain the assertion. The proof is complete.

According to Lemma A.1 and Lemma A.3, we also let β1, · · · , βN and σ be
fixed numbers which satisfy the following condition:

(N2) βn > max{β∗
n, β̃n} and

σ > max
{
1, σ∗,

m1

k1
, · · · , mN

kN
,

m1

k1(1− ζ1,1)
, · · · , mN

kN(1− ζN,N)

}
.
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A.3 The choice of γ, tn and t̂n

To choose the parameters γ, tn and t̂n, we consider the following two functions

ǧn,γ(t) := kn − (kn −
mn

σ
)e−γt and ĝn,γ(t) := kn + kne

−γt.

Some properties of ǧn,γ(t) and ĝn,γ(t) can be characterized in the following lemma.

Lemma A.4. There is a positive number γ∗ < 1 such that the following inequal-
ities hold for γ ∈ (0, γ∗) and 1 ≤ n ≤ N.

(1) mn/(2σ) < ǧn,γ(t) < mn/σ, for all t ∈ [ťn,q, ť
∗
n,q];

(2) kn < ĝn,γ(t) < 3kn, for all t ∈ [t̂n,q, t̂
∗
n,q];

(3) λn,1e
λn,1t + qknκe

κt − γ(kn −mn/σ)e
−γt for any t ∈ [ťn,q, ť

∗
n,q] ∪ [t̂∗n,q, t̂n,q];

(4) −(kn − mn

σ
)(cγ + dne

γ − 2dn + dne
−γ) + ϕ̌n(ťn)Ln/2 ≥ 0 for all n;

(5) cγ + dn(e
γ − 2 + e−γ)− knLn/2 ≤ 0 for all n.

Proof. The assertions of parts (4) and (5) are easy to see, therefore we only prove
the results of parts (1)-(3).

(1) Since γ is positive, by part (1) of Lemma A.2, it is clear that

kn − (kn −mn/σ)e
−γťn,q ≤ ǧn(γ, t) ≤ kn − (kn −mn/σ)e

−γť∗n,q ≤ mn/σ

for all t ∈ [ťn,q, ť
∗
n,q], which implies that ǧn(γ, t) < mn/σ for any t ∈ [ťn,q, ť

∗
n,q].

Since the interval [ťn,q, ť
∗
n,q] is compact and ǧn(0, t) = mn/σ > mn/(2σ) on this

interval, one can verify that

ǧn,γ(t) > mn/(2σ), for small γ ∈ (0, γ1) and any t ∈ [ťn,q, ť
∗
n,q].

Hence proof of this part is complete.

(2) The proof is similar to that of part (1) and we skip it here.

(3) Note that for any fixed q, the interval [ťn,q, ť
∗
n,q] ∪ [t̂∗n,q, t̂n,q] is bounded.

Then it is easy to see that the function λn,1e
λn,1t + qknκe

κt is positive and the
function (kn − mn/σ)e

−γt is bounded on this interval. Therefore, if γ is small
enough, then assertion follows obviously. The proof is complete.

By part (1) of Lemma A.4, for any γ ∈ (0, γ∗), we have

ǧn,γ(ťn,q)− ȟn,q(ťn,q) =ǧn,γ(ťn,q)−mn < ǧn,γ(ťn,q)−mn/σ < 0,

ǧn,γ(ť
∗
n,q)− ȟn,q(ť

∗
n,q) =ǧn,γ(ť

∗
n,q) > 0.

Thus, by Intermediate Value Theorem, one can see that graphs of functions ǧn,γ(t)
and ȟn,q(t) intersect in the interval (ťn,q, ť

∗
n,q). Similarly, by part (2) of Lemma

A.4, we also can obtain that graphs of functions ĝn,γ(t) and ĥn,q(t) intersect in
the interval (t̂n,q, t̂

∗
n,q). Therefore, in the sequel, we assume the parameters γ, tn

and t̂n satisfying the following assumption:
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(N3) γ ∈ (0, γ∗), tn ∈ (ťn,q, ť
∗
n,q), t̂n ∈ (t̂n,q, t̂

∗
n,q),

ǧn,γ(tn) = ȟn,q(tn) and ĝn,γ(t̂n) = ĥn,q(t̂n).

A.4 The choice of τ ∗

According to the assumptions (N1)–(N3), we can represent the functions Φ̌(t)
and Φ̂(t) (see (2.18), (2.19) and Figure ??) by the following equivalent forms:

ϕ̌n(t) = max{eλn,1t − qeηλn,1t, kn − (kn −
mn

σ
)e−γt}, (A.6)

ϕ̂n(t) = min{eλn,1t + qkne
κt, kn + kne

−γt}. (A.7)

By the continuity of functions Φ̌(t) and Φ̂(t), one can easily see that there exists
a τ ∗ > 0 such that the following result holds.

Lemma A.5. There exists a τ ∗ ∈ (0, 1) such that if τn,n < τ ∗ for 1 ≤ n ≤ N,
then the following assertions hold:

(1) e−κcτn,n ≥ ζn,n for all 1 ≤ n ≤ N ;

(2) |ϕ̌n(t− cτn,n)− ϕ̌n(tn)| < Ln/(2M) for all t ∈ [tn, tn + cτn,n];

(3) |ϕ̂n(t− cτn,n)− ϕ̂n(t̂n)| < Ln/(2M) for all t ∈ [t̂n, t̂n + cτn,n].

By the assumptions of (N1)–(N3), if 0 ≤ τ < τ ∗, we are now ready to show
the results of Lemma 2.5.

A.5 Proof of Lemma 2.5.

Let’s prove the results of Lemma 2.5 by checking the following statements:

(1) ϕ̂n(t) ≥ ϕ̌n(t) for all t ∈ R;

(2) eβt(ϕ̂n(t)− ϕ̌n(t)) is nondecreasing in t;

(3) cϕ̌′
n(t) ≤ dnL(ϕ̌n)(t) + ϕ̌n(t)fn

(
[Φ̌|Φ̂I−n

]t(−cτn)
)
;

(4) cϕ̂′
n(t) ≥ dnL(ϕ̂n)(t) + ϕ̂n(t)fn

(
[Φ̂|Φ̌I−n

]t(−cτn)
)
.

To check the inequality of (1), we consider the following four cases:

(1-1) t ≤ min{tn, t̂n}; (1-2) t ≥ max{tn, t̂n};

(1-3) t ∈ (t̂n, tn) and t̂n < tn; (1-4) t ∈ (tn, t̂n) and tn < t̂n.
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All the cases (1-1)–(1-4) can be checked by elementary computations. To avoid
tedious computations, here we only consider the case (1-4). According to Figure
??, we only have to show that

Fn(t) := eλn,1t + qkne
κt + (kn −

mn

σ
)e−γt − kn > 0

for t ∈ (tn, t̂n) and 1 ≤ n ≤ N. By (N3), it is clear that

Fn(tn) =e
λn,1tn + qkne

κtn −
[
kn − (kn −

mn

σ
)e−γtn

]
=eλn,1tn + qkne

κtn −
[
eλn,1tn − qeηλn,1 ťn

]
> 0. (A.8)

Moreover, by part (3) of Lemma A.4 and (N3), we have

F ′
n(t) = λn,1e

λn,1t + qκkne
κt − γ(kn −

mn

σ
)e−γt > 0. (A.9)

Then it follows from (A.8) and (A.9) that F (t) > 0 for all t ∈ (tn, t̂n). Hence the
assertion of (1) follows.

Next, we check the statement of (2) by considering the following four cases:

(2-1) t ≤ min{tn, t̂n}; (2-2) t ≥ max{tn, t̂n};

(2-3) t ∈ (t̂n, tn) and t̂n < tn; (2-4) t ∈ (tn, t̂n) and tn < t̂n.

To avoid tedious computations, we also only consider the case (2-4). For conve-
nience, we set

Fn(t) := eβnt(ϕ̂n(t)− ϕ̌n(t)), for all t ∈ (tn, t̂n).

By (N3) and the result of part (1) of Lemma A.2, we have t̂n < 0 for all 1 ≤ n ≤
N. Since t̂n < 0, Lemma A.3 implies that

F ′
n(t) =e

βnt
[
(βn + λn,1)e

λn,1t + (βn + κ)qkne
κt − knβn + (kn −

mn

σ
)(βn − γ)e−γt

]
≥eβnt

[
(βn + λn,1)e

λn,1t + (βn + κ)qkne
κt − knβn + (kn −

mn

σ
)(βn − γ)

]
> 0,

for t ∈ (tn, t̂n). Therefore e
βt(ϕ̂n(t)− ϕ̌n(t)) is nondecreasing in t.

To cheek the inequality of case (3), we consider the following two cases :

(3-1) t < tn and (3-2) t ≥ tn.

For case (3-1), by (2.18) and (2.19), we know that

dnL(ϕ̌n)(t) + ϕ̌n(t)fn
(
[Φ̌|Φ̂I−n

]t(−cτn)
)
− cϕ̌′

n(t)

=dn(e
λn,1(t−1) − qeηλn,1(t−1))− 2dn(e

λn,1t − qeηλn,1t) + dn(e
λn,1(t+1) − qeηλn,1(t+1))+

ϕ̌n(t)fn
(
[Φ̌|Φ̂I−n

]t(−cτn)
)
− cλn,1(e

λn,1t − qηeηλn,1t)

=ϕ̌n(t)fn
(
[Φ̌|Φ̂I−n

]t(−cτn)− fn(0)
)
− q∆n(ηλn,1, c)e

ηλn,1t. (A.10)
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Then, applying the Mean Value Theorem, we have

ϕ̌n(t)
(
fn([Φ̌|Φ̂I−n

]t(−cτn))− fn(0)
)

=ϕ̌n(t)
[∂fn(ξn)

∂xn
ϕ̌n(t− cτn,n) +

∑
j∈I+n

∂fn(ξj)

∂xj
ϕ̌j(t− cτn,j) +

∑
j∈I−n

∂fn(ξj)

∂xj
ϕ̂j(t− cτn,j)

]
,

≥ϕ̌n(t)
[∂fn(ξn)

∂xn
ϕ̌n(t− cτn,n) +

∑
j∈I−n

∂fn(ξj)

∂xj
ϕ̂j(t− cτn,j)

]
,

≥−Meλn,1t
[
eλn,1t +

∑
j∈I−n

(eλj,1t + qkje
κt)

]
, (A.11)

where M is the number defined in Lemma A.2 and ξ1, · · · , ξN ∈ RN are vectors
which depend on t. Note that tn < ťn,q. By the equations (A.10), (A.11) and the
result of part (2) of Lemma A.2, we obtain

−cϕ̌′
n(t) + dnL(ϕ̌n)(t) + ϕ̌n(t)fn

(
[Φ̌|Φ̂I−n

]t(−cτn)
)
≥ 0,

i.e. inequality (2.1) holds for t < tn.

For case (3-2), by (2.18) and (2.19) again, we obtain that

dnL(ϕ̌n)(t) + ϕ̌n(t)fn
(
[Φ̌|Φ̂I−n

]t(−cτn)
)
− cϕ̌′

n(t)

≥dn
(
kn − (kn −

mn

σ
)e−γ(t−1)

)
− 2dn

(
kn − (kn −

mn

σ
)e−γt

)
+

dn
(
kn − (kn −

mn

σ
)e−γ(t+1)

)
+ ϕ̌n(t)fn

(
[Φ̌|Φ̂I−n

]t(−cτn)
)
− cγ(kn −

mn

σ
)e−γt

=− (kn −
mn

σ
)e−γt(cγ + dne

γ − 2dn + dne
−γ) + ϕ̌n(t)fn

(
[Φ̌|Φ̂I−n

]t(−cτn)
)
.

(A.12)

Since fn(K) = 0 for all 1 ≤ n ≤ N, by (A.6), (A.7) and Mean Value Theorem
again, we have

fn
(
[Φ̌|Φ̂I−n

]t(−cτn)
)

=
∂fn(ξn)

∂xn
(ϕ̌n(t− cτn,n)− kn) +

∑
j∈I+n

∂fn(ξj)

∂xj
(ϕ̌j(t− cτn,j)− kj)+

∑
j∈I−n

∂fn(ξj)

∂xj
(ϕ̂j(t− cτn,j)− kj)

≥∂fn(ξn)
∂xn

(ϕ̌n(t− cτn,n)− kn) +
∑
j∈I+n

−∂fn(ξj)
∂xj

(kj −
mj

σ
)e−γ(t−cτn,j)+

∑
j∈I−n

∂fn(ξj)

∂xj
kje

−γ(t−cτn,j). (A.13)

We further consider two sub-cases:
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(3-2-1) tn < t ≤ tn + cτn,n and (3-2-2) t > tn + cτn,n.

For case (3-2-1), by the part (2) of Lemma A.5, we have

|ϕ̌n(t− cτn,n)− ϕ̌n(tn)| < Ln/(2M). (A.14)

Then, by (A.14), part (1) of Lemma A.2, Lemma A.1, the definition of σ and
equation (A.13), one can see that

fn
(
[Φ̌|Φ̂I−n

]t(−cτn)
)

≥e−γt
[ ∑
j∈I−n

∂fn(ξj)

∂xj
kje

γcτn,j −
∑
j∈I+n

∂fn(ξj)

∂xj
(kj −

mj

σ
)eγcτn,j

]
−

e−γt
[∂fn(ξn)

∂xn
(kn −

mn

σ
)e−γ(tn−t)

]
+
∂fn(ξn)

∂xn

Ln

2M

≥e−γt
[ ∑
j∈I+n

−∂fn(ξj)
∂xj

kje
γcτn,j +

∑
j∈I−n

∂fn(ξj)

∂xj
kje

γcτn,j

]
−

e−γt
[−∂fn(ξn)

∂xn
(kn −

mn

σ
)
]
− Ln/2 ≥ e−γtLn/2. (A.15)

Combining the equations (A.12), (A.15), part (4) of Lemma A.4 and the inequal-
ity

ϕ̌n(t) ≥ ϕ̌n(tn) = kn − (kn −
mn

σ
)e−γtn for t ≥ tn, (A.16)

we obtain

− cϕ̌′
n(t) + dnL(ϕ̌n)(t) + ϕ̌n(t)fn

(
[Φ̌|Φ̂I−n

]t(−cτn)
)

≥− e−γt
[
(kn −

mn

σ
)(cγ + dne

γ − 2dn + dne
−γ)− ϕ̌n(ťn)Ln/2

]
≥ 0.

For the case (3-2-2), by (A.13), it is easy to check that

fn
(
[Φ̌|Φ̂I−n

]t(−cτn)
)
≥ e−γtLn. (A.17)

Similarly, combining the inequalities (A.12), (A.16), (A.17) and result of part (4)
of Lemma A.4, we can also show that

−cϕ̌′
n(t) + dnL(ϕ̌n)(t) + ϕ̌n(t)fn

(
[Φ̌|Φ̂I−n

]t(−cτn)
)
≥ 0

for t > tn + cτn,n.

Finally, let’s check the inequality of (4). Similarly, we also consider the fol-
lowing two cases:

(4-1) t < t̂n and (4-2) t ≥ t̂n.
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For case (4-1), by (2.7) and direct computations, we have

− cϕ̂′
n(t) + dnL(ϕ̂n)(t) + ϕ̂n(t)fn([Φ̂|Φ̌I−n

]t(−cτn))
≤dn

[
eλn,1(t−1) + knqe

κ(t−1) + eλn,1(t+1) + knqe
κ(t+1) − 2(eλn,1t + knqe

κt)
]
+

ϕ̂n(t)fn([Φ̂|Φ̌I−n
]t(−cτn))− c

(
λn,1e

λn,1t + knqκe
κt
)

=qkn∆n(κ, c)e
κt + ϕ̂n(t)(fn([Φ̂|Φ̌I−n

]t(−cτn))− fn(0)). (A.18)

Applying the Mean Value Theorem and using (A.7), we can derive

fn([Φ̂|Φ̌I−n
]t(−cτn))− fn(0) ≤

∂fn(ξn)

∂xn
ϕ̂n(t− cτn,n) +

∑
j∈I+n

∂fn(ξj)

∂xj
ϕ̂j(t− cτn,j)

≤∂fn(ξn)
∂xn

eλn,1(t−cτn,n) +
∑
j∈I+n

∂fn(ξj)

∂xj
eλj,1(t−cτn,j)+

[∂fn(ξn)
∂xn

kne
−κcτn,n +

∑
j∈I+n

∂fn(ξj)

∂xj
kje

−κcτn,j

]
qeκt.

(A.19)

Moreover, by part (1) of Lemma A.5, we have

∂fn(ξn)

∂xn
kne

−κcτn,n+
∑
j∈I+n

∂fn(ξj)

∂xj
kje

−κcτn,j <
∂fn(ξn)

∂xn
kne

−κcτn,n+
∑
j∈I+n

∂fn(ξj)

∂xj
kj < −Ln.

(A.20)
Then, by (H1), (A.19) and (A.20), we know that

fn([Φ̂|Φ̌I−n
]t(−cτn))− fn(0) ≤M

∑
j∈I+n

eλj,1t. (A.21)

Hence, by this inequalities (A.18), (A.21) and result of part (3) of Lemma A.2,
we obtain

− cϕ̂′
n(t) + dnL(ϕ̂n)(t) + ϕ̂n(t)fn([Φ̂|Φ̌I−n

]t(−cτn))

≤q∆n(κ, c)kne
κt +M(eλn,1t + qkne

κt)
∑
j∈I+n

eλj,1t ≤ 0.

Therefore, the inequality (2.2) holds for t < t̂n.

Next, we consider the case (4-2). By (2.18) and (2.19) again, we have

− cϕ̂′
n(t) + dnL(ϕ̂n)(t) + ϕ̂n(t)fn([Φ̂|Φ̌I−n

]t(−cτn))
≤e−γtkn[cγ + dn(e

γ − 2 + e−γ)] + ϕ̂n(t)fn([Φ̂|Φ̌I−n
]t(−cτn)). (A.22)
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Since fn(K) = 0 for all 1 ≤ n ≤ N, by Mean Value Theorem again, we can also
obtain the following inequality

fn([Φ̂|Φ̌I−n
]t(−cτn))

=
∂fn(ξn)

∂xn

(
ϕ̂n(t− cτn,n)− kn

)
+

∑
j∈I+n

∂fn(ξj)

∂xj

(
ϕ̂j(t− cτn,j)− kn

)
+

∑
j∈I−n

∂fn(ξj)

∂xj

(
ϕ̌j(t− cτn,j)− kn

)
≤∂fn(ξn)

∂xn

(
ϕ̂n(t− cτn,n)− kn

)
+ e−γt

∑
j∈I+n

∂fn(ξj)

∂xj
kje

γcτn,j+

e−γt
∑
j∈I−n

−∂fn(ξj)
∂xj

kje
γcτn,j . (A.23)

Similarly, we consider the following two sub-cases:

(4-2-1) t̂n ≤ t ≤ t̂n + cτn,n and (4-2-2) t > t̂n + cτn,n.

For case (4-2-1), by part (3) of Lemma A.5, we have

|ϕ̂n(t− cτn,n)− ϕ̂n(t̂n)| < Ln/(2M).

Furthermore, the result of part (1) of Lemma A.2 and equation (A.23) imply that

fn([Φ̂|Φ̌I−n
]t(−cτn))

≤e−γt
[ ∑
j∈I+n

∂fn(ξn,j)

∂xj
kje

γcτn,j −
∑
j∈I−n

∂fn(ξn,j)

∂xj
kje

γcτn,j +
∂fn(ξn)

∂xn
kne

−γ(t̂n−t)
]
+

− ∂fn(ξn)

∂xn

Ln

2M

≤e−γt
[∂fn(ξn)

∂xn
kn +

∑
j∈I+n

∂fn(ξn,j)

∂xj
kje

γcτn,j +
∑
j∈I−n

−∂fn(ξn,j)
∂xj

kje
γcτn,j

]
+
Ln

2

≤e−γt(−Ln + Ln/2) = −e−γtLn/2. (A.24)

Therefore, combining the equations (A.22) and (A.24), the part (5) of Lemma
A.4 and the fact

ϕ̂n(t) ≥ kn, for all t ≥ t̂n, (A.25)

we have

− cϕ̂′
n(t) + dnL(ϕ̂n)(t) + ϕ̂n(t)fn([Φ̂|Φ̌I−n

]t(−cτn))
≤e−γtkn

(
cγ + dn(e

γ − 2 + e−γ)− knLn/2
)
≤ 0.
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For case (4-2-2), by (A.23), we see that

fn
(
[Φ̂|Φ̌I−n

]t(−cτn)
)

≤e−γt
[ ∑
j∈I+n ∪{n}

∂fn(ξj)

∂xj
kje

γcτn,j +
∑
j∈I−n

−∂fn(ξj)
∂xj

kje
γcτn,j

]
≤ −Lne

−γt. (A.26)

Therefore, by (A.22), (A.25), (A.26) and the part (5) of Lemma A.4, we have

− cϕ̂′
n(t) + dnL(ϕ̂n)(t) + ϕ̂n(t)fn([Φ̂|Φ̌I−n

]t(−cτn))
≤e−γtkn

(
cγ + dn(e

γ − 2 + e−γ)− knLn

)
≤ 0.

The proof is complete.
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